Skip to content

POWER FUNCTION DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.PowerFunction({"alpha": *, "a": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XPowerFunction(α,a,b)

Distribution Domain

x[a,b]

Parameters Domain and Constraints

αR+,aR,bR,a<b

Cumulative Distribution Function

FX(x)=(xaba)α

Probability Density Function

fX(x)=α(xa)α1(ba)α

Percent Point Function / Sample

FX1(u)=[a+u(ba)]α

Parametric Centered Moments

μk=E[Xk]=abxkfX(x)dx

Parametric Mean

Mean(X)=μ1=a+bαα+1

Parametric Variance

Variance(X)=μ2μ12=2a2+2abα+b2α(α+1)(α+1)(α+2)Mean(X)2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2(1α)α+2α(α+3)

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=6(α3α26α+2)α(α+3)(α+4)+3

Parametric Median

Median(X)=[a+12(ba)]α

Parametric Mode

Mode(X)=undefined

Additional Information and Definitions

  • a:Location parameter
  • ba:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents