Skip to content

POWER FUNCTION DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.PowerFunction({"alpha": *, "a": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼PowerFunction(α,a,b)

Distribution Domain

x∈[a,b]

Parameters Domain and Constraints

α∈R+,a∈R,b∈R,a<b

Cumulative Distribution Function

FX(x)=(x−ab−a)α

Probability Density Function

fX(x)=α(x−a)α−1(b−a)α

Percent Point Function / Sample

FX−1(u)=[a+u(b−a)]−α

Parametric Centered Moments

μk′=E[Xk]=∫abxkfX(x)dx

Parametric Mean

Mean(X)=μ1′=a+bαα+1

Parametric Variance

Variance(X)=μ2′−μ1′2=2a2+2abα+b2α(α+1)(α+1)(α+2)−Mean(X)2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=2(1−α)α+2α(α+3)

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=6(α3−α2−6α+2)α(α+3)(α+4)+3

Parametric Median

Median(X)=[a+12(b−a)]−α

Parametric Mode

Mode(X)=undefined

Additional Information and Definitions

  • a:Location parameter
  • b−a:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents