Skip to content

HYPERBOLIC SECANT DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.HyperbolicSecant({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XHyperbolicSecant(μ,σ)

Distribution Domain

x(,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

F_X(x)=2πarctan[exp(π2z(x))]

Probability Density Function

f_X(x)=12σsech(π2z(x))

Percent Point Function / Sample

F1_X(u)=μ+σ2πln[tan(π2u)]

Parametric Centered Moments

μ~k=E[X~k]=xkf_X~(x)dx=1+(1)k2π22kk![ζ(k+1,14)ζ(k+1,34)]

Parametric Mean

Mean(X)=μ+σμ~_1=μ

Parametric Variance

Variance(X)=σ2(μ~2μ~12)=σ2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • X~HyperbolicSecant(0,1)
  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(xμ)/σ
  • u:Uniform[0,1] random varible
  • ζ(a,s):Hurwitz zeta function

Spreadsheet Documents