Skip to content

HYPERBOLIC SECANT DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.HyperbolicSecant({"mu": *, "sigma": *})

πŸ’‘ The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼HyperbolicSecant(ΞΌ,Οƒ)

Distribution Domain

x∈(βˆ’βˆž,∞)

Parameters Domain and Constraints

μ∈R,ΟƒβˆˆR+

Cumulative Distribution Function

F_X(x)=2Ο€arctan⁑[exp(Ο€2z(x))]

Probability Density Function

f_X(x)=12Οƒsech(Ο€2z(x))

Percent Point Function / Sample

Fβˆ’1_X(u)=ΞΌ+Οƒ2Ο€ln[tan⁑(Ο€2u)]

Parametric Centered Moments

ΞΌ~kβ€²=E[X~k]=βˆ«βˆ’βˆžβˆžxkf_X~(x)dx=1+(βˆ’1)k2Ο€22kk![ΞΆ(k+1,14)βˆ’ΞΆ(k+1,34)]

Parametric Mean

Mean(X)=ΞΌ+σμ~β€²_1=ΞΌ

Parametric Variance

Variance(X)=Οƒ2(ΞΌ~2β€²βˆ’ΞΌ~1β€²2)=Οƒ2

Parametric Skewness

Skewness(X)=ΞΌ~3β€²βˆ’3ΞΌ~2β€²ΞΌ~1β€²+2ΞΌ~1β€²3(ΞΌ~2β€²βˆ’ΞΌ~1β€²2)1.5=0

Parametric Kurtosis

Kurtosis(X)=ΞΌ~4β€²βˆ’4ΞΌ~1β€²ΞΌ~3β€²+6ΞΌ~1β€²2ΞΌ~2β€²βˆ’3ΞΌ~1β€²4(ΞΌ~2β€²βˆ’ΞΌ~1β€²2)2=3

Parametric Median

Median(X)=ΞΌ

Parametric Mode

Mode(X)=ΞΌ

Additional Information and Definitions

  • X~∼HyperbolicSecant(0,1)
  • ΞΌ:Location parameter
  • Οƒ:Scale parameter
  • z(x)=(xβˆ’ΞΌ)/Οƒ
  • u:Uniform[0,1] random varible
  • ΞΆ(a,s):Hurwitz zeta function

Spreadsheet Documents