Skip to content

RICE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Rice({"v": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XRice(v,σ)

Distribution Domain

x[0,)

Parameters Domain and Constraints

vR+,σR+

Cumulative Distribution Function

FX(x)=1Q1(vσ,xσ)

Probability Density Function

fX(x)=xσ2exp((x2+v2)2σ2)I0(xvσ2)

Percent Point Function / Sample

SampleX=Φ1(u1,v,σ)2+Φ1(u2,0,σ)2

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx=σk2k/2Γ(1+k/2)Lk/2(v2/2σ2)

Parametric Mean

Mean(X)=μ1

Parametric Variance

Variance(X)=μ2μ12

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=FX1(12)

Parametric Mode

Mode(X)=argmaxxfX(x)

Additional Information and Definitions

  • Computing an analytic expression for the inverse of the cumulative distribution function is notfeasible. Nonetheless, it is possible to generate a random sample from the distribution.
  • Φ1(u,mean,variance):Inverse of cumulative function from normal distribution
  • Lr(x):Laguerre polynomials of order rR
  • L12(x)=ex/2(x)I1(x2)ex/2(x1)I0(x2)
  • L32(x)=13ex/2(2x26x+3)I0(x/2)23ex/2(x2)xI1(x/2)
  • Iα(x):Modified Bessel function of the first kind of order αN
  • Qk(a,b):Marcum Q-function of order k N
  • u1:Uniform[0,1] random varible
  • u2:Uniform[0,1] random varible

Spreadsheet Documents