Skip to content

NORMAL DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Normal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Normal(μ,σ)

Distribution Domain

x∈(−∞,∞)

Parameters Domain and Constraints

μ∈R,σ∈R+

Cumulative Distribution Function

FX(x)=12[1+erf(x−μσ2)]=Φ(x−μσ)

Probability Density Function

fX(x)=1σ2πe−12(x−μσ)2=ϕ(x−μσ)

Percent Point Function / Sample

FX−1(u)=μ+σ2erf−1(2u−1)=μ+σΦ−1(u)

Parametric Centered Moments

μk′=E[Xk]=∫−∞∞xkfX(x)dx=σk⋅(−i2)kU(−k2,12,−12(μσ)2)

Parametric Mean

Mean(X)=μ1′=μ

Parametric Variance

Variance(X)=μ2′−μ1′2=σ2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • u:Uniform[0,1] random varible
  • U(a,b,z):Tricomi’s confluent hypergeometric function
  • Φ(x):CDF normal standard distribution
  • Φ−1(x):PPF normal standard distribution
  • Ï•(x):PDF normal standard distribution
  • erf(x):Error function
  • erf−1(x):Inverse of error function

Spreadsheet Documents