Skip to content

NORMAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Normal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XNormal(μ,σ)

Distribution Domain

x(,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

FX(x)=12[1+erf(xμσ2)]=Φ(xμσ)

Probability Density Function

fX(x)=1σ2πe12(xμσ)2=ϕ(xμσ)

Percent Point Function / Sample

FX1(u)=μ+σ2erf1(2u1)=μ+σΦ1(u)

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx=σk(i2)kU(k2,12,12(μσ)2)

Parametric Mean

Mean(X)=μ1=μ

Parametric Variance

Variance(X)=μ2μ12=σ2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • u:Uniform[0,1] random varible
  • U(a,b,z):Tricomi’s confluent hypergeometric function
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution
  • ϕ(x):PDF normal standard distribution
  • erf(x):Error function
  • erf1(x):Inverse of error function

Spreadsheet Documents