Skip to content

GAMMA 3P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Gamma3P({"alpha": *, "loc": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGamma3P(α,Loc,β)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

αR+,LocR,βR+

Cumulative Distribution Function

FX(x)=P(α,xLocβ)=1Γ(α)γ(α,xLocβ)

Probability Density Function

fX(x)=1Γ(α)βα(xLoc)α1exLocβ

Percent Point Function / Sample

FX1(u)=Loc+βP1(α,u)

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=βkΓ(k+α)Γ(α)

Parametric Mean

Mean(X)=Loc+μ~1=Loc+αβ

Parametric Variance

Variance(X)=μ~2μ~12=αβ2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2α

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3+6α

Parametric Median

Median(X)=Loc+(α1)βif α>1

Parametric Mode

Mode(X)=Loc+βP1(α,12)

Additional Information and Definitions

  • X~Gamma(α,β)
  • Loc:Location parameter
  • β:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents