Skip to content

GENERALIZED LOGISTIC DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedLogistic({"c": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGeneralizedLogistic(c,Loc,Sc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

cR+,LocR,ScR+

Cumulative Distribution Function

FX(x)=1(1+exp(z(x)))c

Probability Density Function

fX(x)=cexp(z(x))Sc(1+exp(z(x)))c+1

Percent Point Function / Sample

FX1(u)=LocScln(u1/c1)

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc+Sc(γ+ψ0(c))

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)=Sc2(π26+ψ1(c))

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=ψ2(c)+2ζ(3)(π26+ψ1(c))3/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=(π415+ψ3(c))(π26+ψ1(c))2

Parametric Median

Median(X)=LocScln(21/c1)

Parametric Mode

Mode(X)=Loc+Scln(c)

Additional Information and Definitions

  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • γ:Euler-Mascheroni constant=0.5772156649
  • ψ0(x):Digamma function
  • ψn(x):Polygamma function of order nN

Spreadsheet Documents