Skip to content

GENERALIZED LOGISTIC DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedLogistic({"c": *, "loc": *, "scale": *})

πŸ’‘ The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼GeneralizedLogistic(c,Loc,Sc)

Distribution Domain

x∈(Loc,∞)

Parameters Domain and Constraints

c∈R+,Loc∈R,Sc∈R+

Cumulative Distribution Function

FX(x)=1(1+exp⁑(βˆ’z(x)))c

Probability Density Function

fX(x)=cexp⁑(βˆ’z(x))Sc(1+exp⁑(βˆ’z(x)))c+1

Percent Point Function / Sample

FXβˆ’1(u)=Locβˆ’Scln⁑(uβˆ’1/cβˆ’1)

Parametric Centered Moments

ΞΌkβ€²=E[Xk]=βˆ«βˆ’βˆžβˆžxkfX(x)dx

Parametric Mean

Mean(X)=Loc+Scβ‹…ΞΌ~1β€²=Loc+Sc(Ξ³+ψ0(c))

Parametric Variance

Variance(X)=Sc2β‹…(ΞΌ~2β€²βˆ’ΞΌ~1β€²2)=Sc2(Ο€26+ψ1(c))

Parametric Skewness

Skewness(X)=ΞΌ3β€²βˆ’3ΞΌ2β€²ΞΌ1β€²+2ΞΌ1β€²3(ΞΌ2β€²βˆ’ΞΌ1β€²2)1.5=ψ2(c)+2ΞΆ(3)(Ο€26+ψ1(c))3/2

Parametric Kurtosis

Kurtosis(X)=ΞΌ4β€²βˆ’4ΞΌ1β€²ΞΌ3β€²+6ΞΌ1β€²2ΞΌ2β€²βˆ’3ΞΌ1β€²4(ΞΌ2β€²βˆ’ΞΌ1β€²2)2=(Ο€415+ψ3(c))(Ο€26+ψ1(c))2

Parametric Median

Median(X)=Locβˆ’Scln⁑(21/cβˆ’1)

Parametric Mode

Mode(X)=Loc+Scln⁑(c)

Additional Information and Definitions

  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xβˆ’Loc)/Sc
  • u:Uniform[0,1] random varible
  • Ξ³:Euler-Mascheroni constant=0.5772156649
  • ψ0(x):Digamma function
  • ψn(x):Polygamma function of orderΒ n∈N

Spreadsheet Documents