Skip to content

KUMARASWAMY DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Kumaraswamy({"alpha": *, "beta": *, "min": *, "max": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XKumaraswamy(α,β,min,max)

Distribution Domain

x(min,max)

Parameters Domain and Constraints

αR+,βR+,minR,maxR

Cumulative Distribution Function

FX(x)=1(1z(x)α)β

Probability Density Function

fX(x)=αβz(x)α1(1z(x)α)β1

Percent Point Function / Sample

FX1(u)=min+(maxmin)×(1(1u)1β)1α

Parametric Centered Moments

μ~k=E[X~k]=01xkfX~(x)dx=βBeta(1+kα,β)

Parametric Mean

Mean(X)=min+(maxmin)×μ~1

Parametric Variance

Variance(X)=(maxmin)2(μ~2μ~12)

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2

Parametric Median

Median(X)=min+(maxmin)×(121/b)1/a

Parametric Mode

Mode(X)=min+(maxmin)×(a1ab1)1/a

Additional Information and Definitions

  • X~Kumaraswamy(α,β,0,1)
  • z(x)=(xmin)/(maxmin)
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents