Skip to content

FRECHET DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Frechet({"alpha": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XFrechet(α,Loc,Sc)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

αR+,LocR,ScR+

Cumulative Distribution Function

FX(x)=e(z(x))α

Probability Density Function

fX(x)=αSc(z(x))1αe(z(x))α

Percent Point Function / Sample

FX1(u)=Loc+Sc(ln(u))1α

Parametric Centered Moments

μk=E[Xk]=LocxkfX(x)dx=Γ(1kα)

Parametric Mean

Mean(X)=Loc+Scμ~1if α>1

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)if α>2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5if α>3

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2if α>4

Parametric Median

Median(X)=Loc+Scln(2)α

Parametric Mode

Mode(X)=Loc+Sc(α1+α)1/α

Additional Information and Definitions

  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function

Spreadsheet Documents