Skip to content

GENERALIZED EXTREME VALUE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedExtremeValue({"xi": *, "mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGeneralizedExtremeValue(ξ,μ,σ)

Distribution Domain

if ξ>0: x(z(x),),if ξ=0: x(,),if ξ<0: x(,z(x))

Parameters Domain and Constraints

ξR,μR,σR+

Cumulative Distribution Function

FX(x)={exp(exp(z(x)))if  ξ=0exp((1+ξz(x))1/ξ)if  ξ0

Probability Density Function

fX(x)={1σexp(z(x))exp(exp(z(x)))if  ξ=01σ(1+ξz(x))(1+1/ξ)exp((1+ξz(x))1/ξ)if  ξ0

Percent Point Function / Sample

FX1(u)={μσln(ln(u))if  ξ=0μ+σξ((ln(u))ξ1)if  ξ0

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx=Γ(1kξ)

Parametric Mean

Mean(X)={μ+σ(μ11)/ξif ξ0,ξ<1μ+σγif ξ=0

Parametric Variance

Variance(X)={σ2(μ2μ12)/ξ2if ξ0,ξ<12σ2π26if ξ=0

Parametric Skewness

Skewness(X)={sign(ξ)μ33μ2μ1+2μ13(μ2μ12)1.5if ξ0,ξ<13126ζ(3)π3if ξ=0

Parametric Kurtosis

Kurtosis(X)={3+μ44μ1μ3+6μ12μ23μ14(μ2μ12)2if ξ0,ξ<143+125if ξ=0

Parametric Median

Median(X)={μ+σ(ln2)ξ1ξif  ξ0μσlnln2if ξ=0

Parametric Mode

Mode(X)={μ+σ(1+ξ)ξ1ξif  ξ0μif  ξ=0

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(xμ)/σ
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function
  • γ:Euler-Mascheroni constant=0.5772156649

Spreadsheet Documents