Skip to content

T STUDENT DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.TStudent({"df": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XTStudent(df)

Distribution Domain

x(,)

Parameters Domain and Constraints

dfR+

Cumulative Distribution Function

FX(x)=I(x+x2+df2x2+df,df2,df2)

Probability Density Function

fX(x)=(1+x2/df)(1+df)/2df×Beta(12,df2)

Percent Point Function / Sample

FX1(u)={df(1I1(u,df/2,df/2))I1(u,df/2,df/2)if  u12df(1I1(u,df/2,df/2))I1(u,df/2,df/2)if  u<12

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx={0if  k odd  0<k<dfdfk2i=1k/22i1df2iif  k even  0<k<df

Parametric Mean

Mean(X)=μ1=0

Parametric Variance

Variance(X)=μ2μ12={df/(df+2)if  df>2undefinedif  df2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5={0if  df>3undefinedif  df3

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2={3+6/(df4)if  df>4undefinedif  df4

Parametric Median

Median(X)=0

Parametric Mode

Mode(X)=0

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents