Skip to content

SEMICIRCULAR DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Semicircular({"loc": *, "R": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Semicircular(Loc,R)

Distribution Domain

x∈[Loc,∞)

Parameters Domain and Constraints

Loc∈R,R∈R+

Cumulative Distribution Function

FX(x)=12+z(x)R2−z(x)2πR2+arcsin(z(x)R)π

Probability Density Function

fX(x)=2πR2R2−z(x)2

Percent Point Function / Sample

FX−1(u)=Loc+R×(2I−1(u,1.5,1.5)−1)

Parametric Centered Moments

μk′=E[Xk]=∫Loc∞xkfX(x)dx

Parametric Mean

Mean(X)=μ1′=Loc

Parametric Variance

Variance(X)=μ2′−μ1′2=R24

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=2

Parametric Median

Median(X)=Loc

Parametric Mode

Mode(X)=Loc

Additional Information and Definitions

  • Loc:Location parameter
  • R:Scale parameter
  • z(x)=x−Loc
  • u:Uniform[0,1] random varible
  • I−1(x,a,b):Inverse of regularized incomplete beta function

Spreadsheet Documents