Skip to content

SEMICIRCULAR DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Semicircular({"loc": *, "R": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XSemicircular(Loc,R)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

LocR,RR+

Cumulative Distribution Function

FX(x)=12+z(x)R2z(x)2πR2+arcsin(z(x)R)π

Probability Density Function

fX(x)=2πR2R2z(x)2

Percent Point Function / Sample

FX1(u)=Loc+R×(2I1(u,1.5,1.5)1)

Parametric Centered Moments

μk=E[Xk]=LocxkfX(x)dx

Parametric Mean

Mean(X)=μ1=Loc

Parametric Variance

Variance(X)=μ2μ12=R24

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=2

Parametric Median

Median(X)=Loc

Parametric Mode

Mode(X)=Loc

Additional Information and Definitions

  • Loc:Location parameter
  • R:Scale parameter
  • z(x)=xLoc
  • u:Uniform[0,1] random varible
  • I1(x,a,b):Inverse of regularized incomplete beta function

Spreadsheet Documents